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Using a system of interspecies hybrids, trihybrids, and recombinants with

varying proportions of genomes from three distinct Xenopus species, we

provide evidence for de novo epigenetic silencing of paternal 45S ribosomal

ribonucleic acid (rRNA) genes and their species-dependent expression

dominance that escapes transcriptional inactivation after homologous recombi-

nation. The same pattern of imprinting is maintained in the offspring from

mothers being genetic males (ZZ) sex-reversed to females, indicating that

maternal control of ribosomal deoxyribonucleic acid (rDNA) expression is not

sex-chromosome linked. Nucleolar dominance (nucleolus underdevelopment)

in Xenopus hybrids appears to be associated with a major non-Mendelian

reduction in the number of 45S rDNA gene copies rather than a specific pattern

of their expression. The loss of rRNA gene copies in F1 hybrids was non-random

with respect to the parental species, with the transcriptionally dominant variant

preferentially removed from hybrid zygotes. This dramatic disruption in the

structure and function of 45S rDNA impacts transcriptome patterns of small

nucleolar RNAs and messenger RNAs, with genes from the ribosome and

oxidative stress pathways being among the most affected. Unorthodoxies

of rDNA inheritance and expression may be interpreted as hallmarks of

genetic conflicts between parental genomes, as well as defensive epigenetic

mechanisms employed to restore genome integrity.

1. Introduction
Ribosomal DNA (rDNA) encoding rRNA, with its roots descending from the RNA

world, is the most ancient part of all known genomes on the Earth, which provides

unique insights into the origins of genome architecture, as well as metabolic features

of life at the root of the evolutionary tree [1]. To date, however, rRNA-determining

sequences and the associated chromatin remain ‘dark matter’ of eukaryotic

genomes due to their exceptionally excessive and repetitive nature, hindering effi-

cient characterization and experimentation. The repetitive nature of rDNA was

discovered more than three decades ago when it was first isolated from Xenopus
and found to contain 400–500 repeat units organized in tandem [2–4]. Each 45S

unit consists of 18S, 5.8S, and 28S rRNA genes and spacers oriented mostly in a

head-to-tail configuration. Cytogenetic and in situ hybridization data showed

that rDNA arrays map either to a single (e.g. Xenopus) or multiple (e.g. mammals)

chromosomal pairs and form nucleolar organizer regions (NORs) [3,5,6]. The

nucleolus is a prominent, highly autonomous non-membrane nuclear compartment

that supports protein synthesis machinery by actively transcribing genes for rRNAs,

processing rRNAs, assembling ribosomal subunits, as well as modifying and trans-

porting ribonucleoproteins [7–12]. Although rDNA segregation is completely

dependent on the chromosome transmission mechanism, nucleolar autonomy

can be perceived as almost a symbiotic mini-life form with its own minigenome,

origin of replication [13,14], replication fork block [15,16], and an agglomerate of

highly specialized proteins, including 45S rRNA-specific Pol I transcription machin-

ery [17]. As one example, the nucleolus in fission and budding yeast avoids
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Figure 1. A pictorial representation of nucleolar dominance in Xenopus.
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disassembly during mitotic and meiotic division and recruits

new protein complexes for the heterochromatization and segre-

gation of rDNA, which results in delayed separation in anaphase

relative to other genomic regions [18–22].

In some interspecies hybrids, rRNA genes from only one

parental species are transcribed and the number of nucleoli

formed per nucleus tends to be halved relative to progenitors,

an enigmatic phenomenon known as nucleolar dominance

[23]. Unlike X chromosome silencing, which is random with

respect to the origin of parental chromosome (except marsu-

pials [24]), nucleolar dominance is progenitor dependent,

with rRNA genes from one parental species consistently

dominant over the other [25–27]. For example, a hierarchy

of dominance has been observed in reciprocal crosses between

allotetraploid Brassica species, in which B. nigra dominates over

B. rapa and B. oleracea, and B. rapa dominates only over

B. oleracea [23]. Similar species-dependent nucleolar dominance

has been believed to occur in a palaeo-allotetraploid amphibian

system, Xenopus frogs, with parental X. laevis, X. muelleri, and

X. borealis having two nucleoli per cell, but their F1 hybrids devel-

oping only one nucleolus under X. laevis dominance (figure 1)

[25–27]. Nucleolar dominance was mimicked in Xenopus using

X. laevis and X. borealis minigenes with intergenic rRNA spacers

co-injected into oocytes, resulting in suppression of transcription

from X. borealis minigenes [28]. This has led to the hypothesis of

enhancer imbalance postulating that either intergenic enhancer

repeats alone [28] or enhancer repeats and spacer promoters

confer X. laevis dominance [29,30]. However, we have recently

re-examined the patterns of 45S rRNA transcription in F1

Xenopus hybrids and found it to be under maternal rather than

species control [31]. Here, we dissect nucleolar dominance

with respect to rRNA expression, rDNA inheritance, as well as

global responses at the transcriptome level in a variety of

hybrid recombinants among three Xenopus species. Together,

these observations shed light on the genetic basis of nucleolar

dominance and its genome-wide impacts.

2. Material and methods
See electronic supplementary material, S1.

3. Results
(a) Number of nucleoli and 45S rDNA expression

patterns
Unlike parental species that have two nucleoli per nucleus

forming from two homologous NORs, F1 hybrid, backcross,
and trihybrid frogs tend to develop only one nucleolus per

nucleus, regardless of tissue type or developmental stage,

and in spite of the presence of both homologous NORs

(table 1 and figure 2; electronic supplementary material,

figure S1). Based on next generation sequencing (Ion Torrent,

Life Technologies) of transcriptomes, as well as allele-specific

pyrosequencing and droplet digital polymerase chain reaction

(PCR) assays, we demonstrate that F1 hybrids are characterized

by the predominantly (91–97%) maternal expression of 45S

rDNA in all stages and tissues (table 1; see also [31]). Similarly,

all backcrosses with grandmaternal X. laevis, including those

from sex-reversed mothers F1(L �M) being genetic males

(having ZZ sex chromosomes), resulted in expression patterns

consistent with maternal dominance (table 1). However, back-

cross offspring with grandmaternal X. borealis (i.e. crosses

F1(B � L)C � LF and F1(B � L)C � BF) exhibited X. laevis
(grandpaternal) dominance in spite of their mothers

having X. borealis expression (table 1). Trihybrids from the

cross (L �M)C � BF had X. laevis (maternal) expression.

(b) 45S rDNA copy numbers and parental genomic
proportions

F1 hybrids had between 46–55% and 43–70% fewer 45S

rRNA genes relative to the mid-parent value in reciprocal

crosses that combined X. laevis and X. muelleri, and X. laevis
and X. borealis genomes, respectively (table 1). A similar pat-

tern was observed in backcross hybrids that tended to lose

20–27% and 38–49% of rRNA genes relative to the mid-

parent value in crosses combining X. laevis and X. muelleri,
and X. laevis and X. borealis genomes, respectively. Assuming

Mendelian ratio expectations, X. laevis rRNA genes were

20–42% underrepresented in F1 hybrid zygotes (table 1).

(c) Expression profiling of messenger RNAs and small
nucleolar RNAs in Xenopus laevis, Xenopus muelleri,
and their hybrid F1

We used Illumina (HiSeq) RNA-sequencing of X. laevis,

X. muelleri, and their hybrid F1 to assess transcriptome-

wide changes associated with observed rDNA and rRNA

unorthodoxies (electronic supplementary material, figure

S2). The largest fraction (18–31%) of the 116 and 279 differen-

tially expressed genes (false discovery rate (FDR p , 0.05) in,

respectively, X. laevis � X. muelleri, and X. muelleri � X. laevis
hybrids relative to parental species belonged to Gene Ontol-

ogy (GO) categories that were directly related to ribosome

structure, rRNA binding, and the polysome (electronic sup-

plementary material, tables S1–S3). Ribosome-related

categories were the only significantly over-represented GO

terms at the FDR p , 0.05 level. Ribosomal protein genes

(e.g. rplp1, rplp2, rplp3, rplp11, rps3a-a, rps15, and rpl28-a) were

among the most overexpressed (fivefold to 107-fold) genes in

hybrids, presumably due to overcompensation for rDNA

depletion and rDNA-related incompatibilities. However,

ATP5A1, a nuclear gene encoding a subunit of mitochondrial

ATP-synthase, was the most significantly anomalously

expressed gene (FDR p , 2.3 � 10221) in X. laevis � X. muelleri
hybrids (electronic supplementary material, table S1). Similar

to ribonucleoprotein complex genes, ATP5A1 and COX7A2,

genes from the oxidative phosphorylation pathway, were both

highly upregulated in hybrid genomes. A number of other
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(a) (b) (c)

(d ) (e) ( f )

Figure 2. Fluorescent imaging of nucleoli and NORs in Xenopus kidney cells. Anti-nucleolin staining: (a) Xenopus laevis, (b) X. borealis, and (c) F1(X. laevis �
X. borealis). 18S rDNA FISH assays: (d ) X. laevis, (e) X. borealis, and ( f ) F1(X. laevis � X. borealis).
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genes associated with oxidative stress were also upregulated in

hybrids, including three ATPases, ALDH1L1, AASS, and LOX

(figure 3; electronic supplementary material, table S1). Overall,

very few genes had maternally biased transcript frequencies

(adam10, cwf19l2, myrf, and pacsin3; however, one gene,

ppp1r14c, was paternally biased).

Based on SOLiD (ABI) sequencing of small RNAs, we found

that two small nucleolar RNAs (snoRNAs), SNORD22 and

SNORD96, were consistently differentially expressed in F1

hybrids relative to their parental X. laevis and X. muelleri.
Three additional snoRNAs (SNORD49, snoR38, and

SNORA73) were downregulated; with only one upregulated in

F1 hybrids (SNORD29) relative to parental X. laevis (electronic

supplementary material, table S4). At least two of the snoRNAs

are derived from introns of the U22 host gene whose primary

role seems to be transcriptional production of snoRNA [32].

No snoRNAs were subject to parental imprinting with the poss-

ible exception of snosnR60_Z15, expression of which was

consistent with paternal (or X. muelleri) imprinting.

Together, these results indicate that nucleolar dominance

is not only associated with a distinct rDNA expression

pattern, but also with rDNA hereditary instability, having
profound impacts on the rest of transcriptome. As discussed

below, Xenopus provide a unique model system to investigate

the relationship between these phenomena in animals.
4. Discussion
(a) Number of nucleoli and 45S rDNA expression

patterns
In agreement with earlier studies [25–27], we show that

X. laevis, X. muelleri, and X. borealis typically develop two

nucleoli per nucleus, whereas F1 hybrids among the species

tend to suppress one of the nucleoli, a pattern interpreted as

nucleolar dominance (figures 1 and 2; and electronic sup-

plementary material, figure S1). However, the early reports

have incorrectly linked this phenomenon to species-specific

genome dominance, claiming that only X. laevis 45S rRNA

gene copies are transcribed, regardless of the cross direction.

We have established that 45S rRNA (but not 5S rRNA) in F1

hybrids is under genomic imprinting, and maternal copies

are predominantly expressed in all stages and tissues [31].

http://rspb.royalsocietypublishing.org/
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Interestingly, parental genome imprinting was believed to

have evolved in response to parental conflicts involving

embryonic growth; and therefore are absent from amphibians,

animals devoid of intimate parent–offspring interactions

during the embryo development [33]. We thus ask if this dra-

matic epigenetic phenomenon, likely affecting more than 50%

of all transcriptional output, is a transient feature limited to

F1 hybrids or a more general, although overlooked, trait of

Xenopus chromatin. To address the question, we backcrossed

F1 hybrid females (F1 hybrid males are sterile [34,35]) to all

three parental species. Similar to F1 hybrids, backcross hybrids

also develop only one nucleolus (electronic supplementary

material, figure S1).

We were surprised to observe that in offspring from a

backcross of F1(X. borealis C � X. laevis F) C � X. laevis the

expression pattern completely shifted to X. laevis dominance

(table 1), despite the fact that their F1 mother had X. borealis
expression. Even in a backcross between both parents having

X. borealis expression, i.e. F1(X. borealis C � X. laevis F) C �
X. borealis F, offspring showed a slight bias towards X. laevis
expression (56%) that originated from grandpaternal genomic

contribution. Unlike paternal copies, grandpaternal X. laevis
copies appear to escape silencing because they segregate

through maternal chromosomes. Since all other backcrosses

also predominantly expressed X. laevis copies regardless of

the paternal species, we conclude that (i) although paternal

genes are silenced, (ii) once maternal NOR contains genes

from X. laevis, these genes transcriptionally dominate over

genes from the other species, even if X. laevis is in the minority
(table 1), and (iii) nucleolar dominance, or the number of

expressed nucleoli, is uncoupled from gene expression patterns

and genomic imprinting.

The expression patterns are consistent with de novo silen-

cing of 45S rDNA from the sperm pronucleus within the

maternal cytoplasm, which may be an ancient epigenetic fea-

ture of amphibian chromatin. The Xenopus sperm nucleus is

rapidly reprogrammed by the egg cytoplasm following ferti-

lization to form the paternal pronucleus, and both egg and

sperm pronuclei start very intense DNA replication within

20 min of fertilization [36,37]. The process takes place in

an environment extremely enriched for maternal rRNAs,

associated small RNAs, and proteins, as amphibian oocytes

undergo rDNA amplification leading to 500–2 500 extrachro-

mosomal nucleoli containing at least 2 million rRNA gene

copies [38]. This transcriptional repression of paternal genes

does not prevent meiotic cross-overs between homologous

clusters in the F1 germline, consistent with the fact that

recombination has been long known to play a critical role

in the stabilization of 45S rDNA repeats [39]. Once recom-

bined into maternal chromosomes, X. laevis 45S rDNA

alleles transcriptionally outcompete X. muelleri and X. borealis
alleles in backcross hybrid genomes. Although 18S, 5.8S, and

28S rDNA sequences are well conserved among taxa, inter-

genic spacer regions (IGSs) are highly variable among

Xenopus species [40]. Unlike X. laevis, which has about 10 60

or 81 bp repeats between the gene promoter and the nearest

IGS promoter, X. borealis and X. muelleri have only two of

these elements in the analogous location (figure 4) [41,42].

http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20152201

6

 on December 9, 2015http://rspb.royalsocietypublishing.org/Downloaded from 
These repeats contain 42 bp enhancer elements in all three

species, but because X. laevis has more than five times more

of them, its alleles transcriptionally dominate in experi-

ments with minigene constructs [28–30] or when combined

in backcross (but not F1) hybrids, as demonstrated in this study.

This species-dependent expression from a maternal

chromosome is a confounding factor in backcrosses, as only

two alleles are available for the analysis, and it is difficult

to determine if the recombinants from backcrosses in fact

undergo de novo silencing of paternal genes. To introduce

a third allele as a marker for the paternal chromosome, we

produced trihybrids by crossing an X. laevis � X. muelleri F1

female with an X. borealis male. Despite the fact that 45S

rRNA gene clusters consisted mainly of paternal X. borealis
alleles (more than 90%, table 1) in such trihybrids, they still

predominantly expressed maternal X. laevis alleles (90%),

similar to F1 and backcross hybrids, and consistent with the

hypothesis of paternal gene inactivation. However, we still

lack direct evidence for the silencing of paternal rDNA in

backcrosses or trihybrids, and alternative explanations need

to be taken into consideration. For example, additional smal-

ler clusters of 45S rRNA genes on other chromosomes may

go undetected, creating a more complex rDNA landscape

shifting expression from one direction to another. Indeed,

Xenopus are pseudo-polyploids with very complex genomes

[43], and even though they have lost 50–75% of all duplicated

genes [44], remnants of 45S rRNA clusters may exist in

addition to the main NOR.

Female Xenopus frogs have heterogametic sex chromosomes

(ZW), whereas males are homogametic (ZZ). We asked a ques-

tion whether maternal control of the imprinting pattern extends

to a cross in which the mother is a genetic male (ZZ) sex-

reversed to phenotypic female to resolve if the system is depen-

dent upon sex chromosomes, which are prone to genetic

conflicts [45]. To address this question, we used a sex-reversed

X. laevis � X. muelleri F1 hybrid male that was a fertile female

[35] and backcrossed it to a X. muelleri male. Offspring from

such a cross are all male, and their expression pattern of 45S

rDNA was predominantly X. laevis (77%), consistent with

maternal control of expression observed in other crosses.

However, in crosses with sex-reversed mothers, maternal

effects are sex-chromosome independent.

(b) 45S rDNA copy numbers and parental genomic
proportions

We hypothesized that nucleolus underdevelopment (nucleolar

dominance) results from disruptions in hybrid genomes and

hereditary instability of rRNA genes, a hypothesis that could

unambiguously be tested in frogs because NOR has been rela-

tively well described in this system [3,4,40]. To test this

hypothesis, we quantified gene copy variation and discovered

that F1 hybrids tended to lose nearly half of all 45S rRNA

genes relative to the mid-parent value in reciprocal crosses that

combine X. muelleri, and X. laevis and X. laevis and X. borealis gen-

omes, respectively. This dramatic rDNA volume reduction

corresponds well with the number of nucleoli being halved in

F1 and backcross hybrids relative to parental species.

Interestingly, X. laevis rRNA genes were preferentially

excluded from all F1 hybrid zygotes, leading to a consistent

20–42% deficit in this allele compared to Mendelian ratio

expectations, although this segregation disadvantage of

X. laevis alleles ceased after recombination (table 1). Longer
IGSs give X. laevis a transcriptional advantage, but presum-

ably at the cost of compromised stability during replication,

recombination, or repair. Ribosomal DNA transcription

and replication are not completely independent, as overex-

pression of the chromatin remodelling complex NoRC not

only silences rDNA transcription, reduces the size and the

number of nucleoli, but also impairs cell proliferation and

resets replication timing from early to late, as observed in

mice [46]. In yeast, rDNA recombination and replication are

dependent on transcription from a non-coding bidirectional

promoter (E-pro) within the rDNA spacer, which stimulates

the dissociation of cohesin, a DNA-binding protein complex

suppressing sister-chromatid-based changes in the rDNA

copy number [39]. Histone deacetylase Sir2 controls

both E-pro transcription [39] and replication timing [47].

Uniparental loss of 45S rDNA was also reported in the

allotetraploid grass Zingeria trichopoda [48], allotetraploid

Tragopogon (Asteraceae) [49], and allopolyploid yeast Pichia
sorbitophila [50]. All these observations from hybrid (allopoly-

ploid) genomes suggest that parent-of-origin effects may be a

pervasive feature of rDNA chromatin.

Hybrid genomes from interspecies crosses tend to

be disrupted by genetic incompatibilities among genes

having their own distinct evolutionary histories, brought

together in a new epigenomic environment (Bateson–Dobz-

hansky–Muller effect) [51]. This instability helps uncover the

hidden world of selfish genetic elements and understand

how illusive the unity of the organism is, being continuously

challenged by genomic conflicts [45]. Indeed, rDNA shows

many characteristics of ‘selfish’ genetic elements, capable of

violating Mendelian rules of fair segregation, and spreading

in genomes without contributing to organismal fitness. First,

rDNA seems to be highly redundant, as many of the rRNA

genes remain heterochromatinized and are never transcribed.

In chickens, for example, a mutant genotype with about 160

out of the typical complement of 290 45S rRNA genes (56%)

still supports normal development [52]. The phenotypic

effect of a new mutation in one of the multiple copies is thus

expected to be negligible, and biased gene conversion may

play a major role in the fate of new mutations [45]. Second,

rDNA is subject to very rapid copy number evolution between

species [53–55] and within species [56–58]. It can extrachro-

mosomally circularize [59,60], attract transposable elements

[58,61] as well as invade other selfish elements, such as B

chromosomes [62–64] and germline-limited DNA [65]. Finally,

rRNA gene clusters are recombinational hotspots in cancer

[66], and abnormalities in the nucleolar morphology of

cancer cells attracted the attention of tumour pathologists as

early as the nineteenth century [67,68].
(c) Expression profiling of messenger RNAs and small
nucleolar RNAs in Xenopus laevis, Xenopus muelleri,
and their hybrid F1

Since snoRNAs are critical for the processing of 5.8S, 18S,

and 28S rRNAs [69], a question arises as to how such a

large disruption of rRNA expression due to nucleolar domi-

nance affects snoRNA profiles. Other studies have found

that some snoRNAs could indeed be subject to parental

imprinting, at least in mammals [70]. Although we observed

significant alterations in snoRNA expression, genome

imprinting does not affect this system of small RNAs. It
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appears that imprinting the sperm pronucleus does not

extend beyond Pol I transcription, as Pol III-transcribed 5S

rDNA was not uniparentally silenced [31], nor were genes

under Pol II transcriptional control, among which we found

very few with maternally biased transcript frequencies. In

addition to affecting the pattern of snoRNAs expression,

nucleolar dominance and the de novo genome imprinting

of 45S rDNA had a significant impact on mRNA levels,

especially those from genes related to ribosome structure,

rRNA binding, the polysome, and oxidative stress. Mito-

chondrial-encoded proteins (maternal) and nuclear-encoded

proteins (maternal and paternal), therefore, must work in con-

cert when forming functional complexes for efficient oxidative

phosphorylation and energy production. Maternal–paternal

cytonuclear incompatibilities may thus lead to oxidative shock

and severe hybrid dysfunctions [71]. Also, direct interactions

between ribosomes and mitochondria via ribosome-sensing

receptors on the outer mitochondrial membrane are central to

co-translational and post-translational protein transport [72],

which may provide a novel link between mitochondrial and

ribosome pathways, consistent with the observed patterns of

transcriptional disruption.

Nucleolar architecture and rDNA transcription respond to

cellular stresses such as UV irradiation, viral infection, and

temperature shock [73]. Given the transcriptome signatures,

it might be tempting to speculate that maternal rDNA imprint-

ing could be an epigenetic defensive response to mitonuclear

incompatibilities and oxidative stress. However, this expla-

nation would be inconsistent with the observed pattern of

rDNA expression in backcrosses (i.e. X. laevis dominance), as

in one backcrossing direction maternal cytoplasm matches

the paternal genome and is expected to reduce mitonuclear

conflict, whereas in the reciprocal direction, maternal cyto-

plasm and paternal genome mismatch and are thus predicted

to increase mitonuclear incompatibilities relative to F1 hybrids.
5. Conclusion
Earlier investigations of nucleolar dominance were mainly

focused on the mechanistic aspects of rDNA expression

control. By extending our explorations to rDNA inheritance

patterns, as well as their consequences on global changes in

transcriptomes, including snoRNAs, we showed that nucleolar

dominance results in a major disruption at both genomic and

transcriptional levels. We also discovered maternal control

over rDNA expression, which can be an ancient epigenetic

mechanism or its relic to keep genomic parasites and genetic

conflicts in check. Highly repeatable rDNA not only harbours

multiple mobile elements [74] but itself has all the major fea-

tures of selfish DNA [45], and its stability poses a constant

metabolic challenge to cells.
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